This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Organoantimony Derivatives of Organophosphorus Ligands Containing Inorganic Chelate Rings

Gabor Balazs; Hans J. Breunig; John E. Drake; Ion Gheşner; Anca Silvestru

To cite this Article Balazs, Gabor , Breunig, Hans J. , Drake, John E. , Gheşner, Ion and Silvestru, Anca(2001) 'Organoantimony Derivatives of Organophosphorus Ligands Containing Inorganic Chelate Rings', Phosphorus, Sulfur, and Silicon and the Related Elements, 169:1,97-100

To link to this Article: DOI: 10.1080/10426500108546599 URL: http://dx.doi.org/10.1080/10426500108546599

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Organoantimony Derivatives of Organophosphorus Ligands Containing Inorganic Chelate Rings

GABOR BALAZS^a, HANS J. BREUNIG^a, JOHN E. DRAKE^b, ION GHEŞNER^a and ANCA SILVESTRU^c

^aInstitut für Anorganische und Physikalische Chemie, Universität Bremen, D-28334 Bremen, GERMANY, ^bDepartment of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, CANADA and ^cChemistry Department, "Babes-Bolyai" University, RO-3400 Cluj-Napoca, ROMANIA

Organoantimony complexes of the type PhSbCl_{2-x}L_x and Me₃SbL₂(L = [(OPPh₂)(XPPh₂)N], X = O, S; x = 1,2) were prepared and investigated by means of IR and multinuclear (${}^{1}H$, ${}^{13}C$, ${}^{31}P$) NMR spectroscopy. The PhSb(Cl)L compounds exhibited a redistribution process to give PhSbL₂ and PhSbCl₂. The molecular structures of PhSb[(SPPh₂)₂N]₂ and Me₃Sb[(OPPh₂)(SPPh₂)N]₂ were established by single crystal X-ray diffractometry.

Keywords: dichalcogenoimidodiphosphinato ligands; organo-Sb(III) and -Sb(V) complexes

INTRODUCTION

Antimony complexes of 1,1-dichalcogenophosphorus ligands exhibit a large variety of structural patterns^[1]. By contrast, few organoSb(V) compounds containing [(XPR₂)(YPR'₂)N]⁻ ligands (X, Y = O, S, Se, R, R' = alkyl, aryl, alkoxy, aroxy), *i.e.* Ph₂SbCl₂L,^[2]

have been investigated only in recent years.

synthesis and Here we report on the spectroscopic characterization of several compounds of the type PhSbCl_{2-x}L_x and Me_3SbL_2 (L = [(OPPh₂)(XPPh₂)N], X = 0, S; x = 1,2), as well as the molecular of PhSb[(SPPh₂)₂N]₂ structure and Me₃Sb[(OPPh₂)(SPPh₂)N]₂ derivatives.

RESULTS AND DISCUSSION

The organo-Sb(III) and -Sb(V) were prepared by metathesis reactions (Table 1):

PhSbCl₂ + x ML
$$\longrightarrow$$
 PhSbCl_{2-x}L_x + x MCl
Me₃SbCl₂ + 2 ML \longrightarrow Me₃SbL₂ + 2 MCl

The strong infrared absorptions observed for all organoantimony complexes in the regions 1240-1210, 1180-1010 and 610-530 cm⁻¹ were assigned to $v_{as}(P_2N)$, v(PO), and v(PS) stretching vibrations, respectively. The absence of a strong absorption at ca. 900 cm⁻¹ due to $v_{as}(P_2NH)$, is indicative of the presence of the ligand in its deprotonated form.

The magnitude of the ³¹P chemical shifts are consistent with a monometallic biconnective and monoconnective coordination pattern of the phosphorus ligand for compounds 1-4 and 5-6, respectively.

A redistribution process of 1 to give 3 and PhSbCl₂ occurred during attempts to grow crystals for X-ray studies. The crystal of PhSb[(SPPh₂)₂N]₂ contains discrete molecules. The ligand unit is

Compounds	Yield (%)	δ(³¹ P) (ppm)	
		PS	РО
PhSbCl[(SPPh2)2N], 1	90	37.3s,br	
PhSbCl[(OPPh2)(SPPh2)N],b 2	86	33.4s	27.6s
PhSb[(SPPh2)2N]2,b 3	77	37.6s	
PhSb[(OPPh2)(SPPh2)N]2,b 4	78	35.5s,br	23.2s,br
Me ₃ Sb[(OPPh ₂) ₂ N] ₂ , 5	73		14.5s, 21.1s
Me ₃ Sb[(OPPh ₂)(SPPh ₂)N] ₂ , ^b 6	94	40.1s 1J _{PC} 107.6 Hz	16.8s ¹ J _{PC} 139.9 Hz

Table 1. Synthesis and NMR data for organo-Sb derivatives.

^c Abbreviations: s = singlet, br = broad; ^{c 1} J_{PC} 107.6 Hz; ^{d 1} J_{PC} 139.9 Hz.

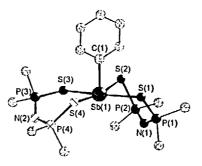


Figure 1. View of the structure of PhSb[(SPPh₂)₂N]₂ (for clarity only *ipso* carbons on phosphorus atoms are shown.).

asymmetric coordinated through both sulfur atoms (Sb-S 2.666/2.778 and 2.690/2.810 Å, respectively) (Fig. 1), resulting in a spiro-bicyclic system. The coordination geometry at the metal atom is distorted square pyramidal [S-Sb-S (*trans*) 169.5, 170.2°, S-Sb-C (range) 83.8-96.2°].

The molecular structure of Me₃Sb[(OPPh₂)(SPPh₂)N]₂ was also established by X-ray diffractometry (Fig. 1). The asymmetric mono-

^{*} Using the Na salt of the ligand; b Using the K salt of the ligand;

thioimidodiphosphinato ligands are monodentate, being connected to the metal atom only through the oxygen atoms (Sb-O 2.38/2.116 Å). The resulting coordination geometry is trigonal bipyramidal, with a planar SbC₃ moiety and the oxygen atoms in axial positions [C-Sb-C (range) 119.5-120.2°, O-Sb-O 173.2°].

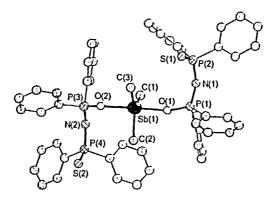


Figure 2. View of the structure of Me₃Sb[(OPPh₂)(SPPh₂)N]₂.

References

- [1] C. Silvestru and I. Haiduc, Coord. Chem. Rev., 147, 117 (1996).
- [2] C. Silvestru, R. Rösler, I. Haiduc, R. A. Toscano, and D. B. Sowerby, J. Organomet. Chem., 515, 131 (1996).